A review of technologies for the removal of sulfate from drinking water

Author:

Quintana‐Baquedano Ariel Antonio1ORCID,Sanchez‐Salas Jose Luis2,Flores‐Cervantes Deborah Xanat3ORCID

Affiliation:

1. Departamento de Ingenieria Civil y Ambiental Universidad de las Americas Puebla Puebla Mexico

2. Departamento de Ciencias Quimico‐Biologicas Universidad de las Americas Puebla Puebla Mexico

3. Departamento de Ingenieria Quimica, Alimentos y Ambiental Universidad de las Americas Puebla Puebla Mexico

Abstract

AbstractBecause of the current water crisis worldwide, it is of great importance to find alternative sources of drinking water, such as sulfur water. This review analyses laboratory, pilot and industrial‐scale technologies available for sulfate removal from water produced for human consumption, from naturally occurring sulfur water and that resulting from human activities. Most of them exceed 90% removal efficiencies. However, the concentrations treated in each study were different; some technologies evaluate concentrations below recommended limits (250 mg L−1), while others evaluate much higher concentrations but require previous treatments. The technologies with higher energy requirements such as reverse osmosis and ion exchange have better removal efficiencies but require larger initial investments and have higher operational costs. Biological treatments, on the other hand, with lower energy and material requirements, are less expensive but require long retention times and depend on the season of the year and/or environmental conditions. Lastly, adsorption removal technologies fall in the middle, especially for energy requirements and operational costs and retention times. This review shows that although there are a variety of sulfate removal technologies suitable for use, there is still room for a novel methodology that removes sulfates from a wider range of concentrations more economically, more effectively and in less time than what is currently available.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3