Flow Spatiotemporal Moran's I: Measuring the Spatiotemporal Autocorrelation of Flow Data

Author:

Fu Qingyang12ORCID,Zhou Mengjie123ORCID,Li Yige1ORCID,Ye Xiang45ORCID,Yang Mengjie1ORCID,Wang Yuhui1ORCID

Affiliation:

1. School of Geographical Sciences Hunan Normal University Changsha Hunan People's Republic of China

2. Hunan Key Laboratory of Geospatial Big Data Mining and Application Hunan Normal University Changsha Hunan People's Republic of China

3. Key Laboratory for Urban‐Rural Transformation Processes and Effects Hunan Normal University Changsha Hunan People's Republic of China

4. School of Geography Nanjing Normal University Nanjing Jiangsu People's Republic of China

5. State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing People's Republic of China

Abstract

Flows can reflect the spatiotemporal interactions or movements of geographical objects between different locations. Measuring the spatiotemporal autocorrelation of flows can help determine the overall spatiotemporal trends and local patterns. However, quantitative indicators of flows used to measure spatiotemporal autocorrelation both globally and locally are still rare. Therefore, we propose the global and local flow spatiotemporal Moran's I (FSTI). The global FSTI is used to assess the overall spatiotemporal autocorrelation degree of flows, and the local FSTI is applied to identify local spatiotemporal clusters and outliers. In the FSTI, to reflect flow spatiotemporal adjacency relationships, we establish flow spatiotemporal weights by multiplying the spatial and temporal weights of flows considering spatiotemporal orthogonality. The flow spatial weights include contiguity‐based (considering first/higher‐order and common border) and Euclidean distance‐based weights. The temporal weights consider ordinary and lagged cases. As flow attributes may follow a long‐tail distribution, we conduct Monte Carlo simulations to evaluate the statistical significance of the results. We assess the FSTI using synthetic datasets and Chinese population mobility datasets, and compare some results with those of recent flow‐related methods. Additionally, we perform a sensitivity analysis to select a suitable temporal threshold. The results show that the FSTI can be used to effectively detect spatiotemporal variations in the autocorrelation degree and type.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

State Key Laboratory of Resources and Environmental Information System

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3