Generalizing Impact Computations for the Autoregressive Spatial Interaction Model

Author:

Laurent Thibault1,Margaretic Paula2ORCID,Thomas‐Agnan Christine3

Affiliation:

1. Toulouse School of Economics CNRS Toulouse France

2. Business School, Finance Department University Adolfo Ibañez Santiago Chile

3. Toulouse School of Economics Université Toulouse Capitole Toulouse France

Abstract

We extend the impact decomposition proposed by LeSage and Thomas‐Agnan (2015) in the spatial interaction model to a more general framework, where the sets of origins and destinations can be different, and where the relevant attributes characterizing the origins do not coincide with those of the destinations. These extensions result in three flow data configurations which we study extensively: the square, the rectangular, and the noncartesian cases. We propose numerical simplifications to compute the impacts, avoiding the inversion of a large filter matrix. These simplifications considerably reduce computation time; they can also be useful for prediction. Furthermore, we define local measures for the intra, origin, destination and network effects. Interestingly, these local measures can be aggregated at different levels of analysis. Finally, we illustrate our methodology in a case study using remittance flows all over the world.

Publisher

Wiley

Subject

Earth-Surface Processes,Geography, Planning and Development

Reference23 articles.

1. Modeling Network Autocorrelation in Space–Time Migration Flow Data: An Eigenvector Spatial Filtering Approach

2. A spatial analysis of gravity flows

3. Those gravity parameters again

4. Dargel L.andT.Laurent. (2021).“spflow: Spatial Econometric Interaction Models.” R package version 0.1.0.

5. Dargel L.andC.Thomas‐Agnan. (2023). “Efficient Estimation of Spatial Econometric Interaction Models for Sparse OD Matrices.” TSE Working Paper No. 23‐1409.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3