Hybridizing Geographically Weighted Regression and Multilevel Models: A New Approach to Capture Contextual Effects in Geographical Analyses

Author:

Feuillet Thierry12ORCID,Cossart Etienne3,Charreire Helene24,Banos Arnaud5,Pilkington Hugo6,Chasles Virginie3,Hercberg Serge2,Touvier Mathilde2,Oppert Jean Michel26

Affiliation:

1. University of Caen, CNRS ‐ UMR 6266 IDEES Caen France

2. Nutritional Epidemiology Research Team (EREN) Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS) 93017 Bobigny France

3. University Jean Moulin Lyon 3, CNRS ‐ UMR 5600 Environnement Ville Société Lyon France

4. MoISA Univ Montpellier, CIRAD, CIHEAM‐IAMM, INRAE, Institut Agro, IRD Montpellier France

5. CNRS – UMR 6266 IDEES Le Havre France

6. Department of Nutrition, Human Nutrition Research Center Ile‐de‐France (CRNH IdF), Pitié‐Salpêtrière Hospital (AP‐HP) Sorbonne University Paris France

Abstract

Multilevel models are one of the main statistical methods used in modeling contextual effects in social sciences. A common limitation of these methods is the use pre‐set boundaries—usually administrative units—to define contexts, when these boundaries do not always match up with the “true” causally relevant contexts that may affect the outcomes of interest. In this study applied to the obesity geography in the Paris area (France), we propose a new spatially explicit two‐step procedure to tackle this methodological issue. The first step consists in estimating a geographically weighted regression model, then using it to reveal and delineate relevant nonstationarity‐based data‐driven spatial contexts, and finally including them as a random effect into a random slope multilevel model. In applying this hybrid methodology for modeling body mass index within a sample of 9,089 French adults, we demonstrate that it outperforms administrative‐based multilevel models in terms of decreasing Akaike information criteria, and is better at accounting for contextual effects through intraclass correlation coefficient and increasing slope variance. We suggest that this procedure might be generalized to quantitative geographical analyses involving contextual effects.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3