Affiliation:
1. CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega‐Science, Institute of Oceanology Chinese Academy of Sciences Qingdao China
2. Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
3. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
4. College of Oceanography Hohai University Nanjing China
Abstract
AbstractHypoxia is a major emerging threat to coastal ecosystems, which is closely related to the decline in seagrass meadows, but its damage mechanism is still unclear. This study found that hypoxia at night significantly reduced the photosynthetic capacity of Enhalus acoroides after reillumination. Photosystem II (PSII) was damaged by high‐light stress during daytime low‐tide exposure, but high‐light‐damaged PSII of E. acoroides could recover part of its activity indark normoxic seawater to maintain the normal operation of photosynthesis after reillumination during the next day. However, hypoxia inhibited the recovery of damaged PSII under darkness. By transcriptomic analysis and inhibitor verification experiments, dark hypoxia was shown to inhibit respiration, thereby reducing ATP production and preventing ATP from being transported into chloroplasts, which, in turn, led to an insufficient supply of energy required for PSII to recover. This study demonstrated that hypoxia has several negative impacts on the photosynthetic apparatus of E. acoroides at night reducing photosynthetic capacity after reillumination, which may be an important factor leading to the decline of the seagrass meadows.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献