Bryophytes dominate plant regulation of soil microclimate in alpine grasslands

Author:

Jaroszynska Francesca1ORCID,Althuizen Inge12ORCID,Halbritter Aud Helen1ORCID,Klanderud Kari3ORCID,Lee Hanna24ORCID,Telford Richard J.1ORCID,Vandvik Vigdis1ORCID

Affiliation:

1. Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen Bergen Norway

2. NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research Bergen Norway

3. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences Ås Norway

4. Department of Biology, Norwegian University of Science and Technology Trondheim Norway

Abstract

Soil temperature and moisture are important regulators of a broad range of biotic and abiotic processes in terrestrial ecosystems. Vegetation can, in turn, play a role in regulating soil microclimate, which creates potential for powerful and interactive feedbacks from soil and vegetation on the atmosphere. Although the regulatory effect of vegetation on soil microclimatic conditions has been quite extensively and empirically assessed, most studies have determined the net effect of intact woody vegetation versus bare ground. However, for other plant functional groups we lack a clear understanding of their role and any climate‐context dependency in controlling microclimatic conditions.We investigated the role of three major plant functional groups – graminoids, forbs and bryophytes – in regulating soil microclimate in semi‐natural alpine grasslands. Using a fully factorial above‐ground biomass removal experiment, we assessed the role of these plant functional groups in regulating soil temperature amplitude, soil moisture, and number of freezing days. The experiment was replicated across orthogonal temperature and precipitation gradients in Norway to assess whether the effects of functional group abundance varied with climate.The effect of plant biomass on soil microclimate varied among functional groups across the climatic gradients. Bryophytes reduced growing season soil temperature, whereas graminoids and forbs did not (0.5ºC compared to 0ºC), and with a stronger effect in colder climates at higher elevations and on days with high solar radiation. Bryophyte biomass further reduced the number of soil freezing days at boreal and sub‐alpine sites. Finally, graminoid biomass partly explained variation in soil moisture: soils dried more under graminoids at drier sites.Our findings highlight that functional group identity plays a key role in regulating soil microclimate in alpine grasslands across seasons. The strong effect of bryophytes on soil temperature points to their importance in the plant community for a variety of ecosystem functions, some of which may be indirectly vulnerable to future warming via biomass reductions of bryophytes.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3