Neuropeptidergic control circuits in the spinal cord for male sexual behaviour: Oxytocin–gastrin‐releasing peptide systems

Author:

Oti Takumi12,Sakamoto Hirotaka23ORCID

Affiliation:

1. Department of Biological Sciences, Faculty of Science Kanagawa University Hiratsuka Japan

2. Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology Okayama University Okayama Japan

3. Department of Biology, Faculty of Environmental, Life, Natural Science and Technology Okayama University Okayama Japan

Abstract

AbstractThe neuropeptidergic mechanisms controlling socio‐sexual behaviours consist of complex neuronal circuitry systems in widely distributed areas of the brain and spinal cord. At the organismal level, it is now becoming clear that “hormonal regulations” play an important role, in addition to the activation of neuronal circuits. The gastrin‐releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the “spinal ejaculation generator (SEG).” Oxytocin, long known as a neurohypophyseal hormone, is now known to be involved in the regulation of socio‐sexual behaviors in mammals, ranging from social bonding to empathy. However, the functional interaction between the SEG neurons and the hypothalamo‐spinal oxytocin system remains unclear. Oxytocin is known to be synthesised mainly in hypothalamic neurons and released from the posterior pituitary into the circulation. Oxytocin is also released from the dendrites of the neurons into the hypothalamus where they have important roles in social behaviours via non‐synaptic volume transmission. Because the most familiar functions of oxytocin are to regulate female reproductive functions including parturition, milk ejection, and maternal behaviour, oxytocin is often thought of as a “feminine” hormone. However, there is evidence that a group of parvocellular oxytocin neurons project to the lower spinal cord and control male sexual function in rats. In this report, we review the functional interaction between the SEG neurons and the hypothalamo‐spinal oxytocin system and effects of these neuropeptides on male sexual behaviour. Furthermore, we discuss the finding of a recently identified, localised “volume transmission” role of oxytocin in the spinal cord. Findings from our studies suggest that the newly discovered “oxytocin‐mediated spinal control of male sexual function” may be useful in the treatment of erectile and ejaculatory dysfunction.

Funder

Japan Society for the Promotion of Science

Suzuken Memorial Foundation

Takeda Science Foundation

NOVARTIS Foundation (Japan) for the Promotion of Science

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3