Utilization of machine learning to model the effect of blood product transfusion on short‐term lung transplant outcomes

Author:

Melnyk Vladyslav1,Xu Wen2,Ryan John P.3,Karim Helmet T.45,Chan Ernest G.3ORCID,Mahajan Aman2,Subramaniam Kathirvel2ORCID

Affiliation:

1. Department of Anesthesiology University of Alberta – Royal Alexandra Hospital Edmonton AB Canada

2. Department of Anesthesiology University of Pittsburgh School of Medicine Pittsburgh Pennsylvania USA

3. Division of Lung Transplantation Department of Cardiothoracic Surgery University of Pittsburgh Medical Center Pittsburgh Pennsylvania USA

4. Department of Psychiatry University of Pittsburgh Pittsburgh Pennsylvania USA

5. Department of Bioengineering University of Pittsburgh Pittsburgh Pennsylvania USA

Abstract

AbstractThe objective of this study was to identify the relationship between blood product transfusion and short‐term morbidity and mortality following lung transplantation utilizing machine learning. Preoperative recipient characterstics, procedural variables, perioperative blood product transfusions, and donor charactersitics were included in the model. The primary composite outcome was occurrence on any of the following six endpoints: mortality during index hospitalization; primary graft dysfunction at 72 h post‐transplant or the need for postoperative circulatory support; neurological complications (seizure, stroke, or major encephalopathy); perioperative acute coronary syndrome or cardiac arrest; and renal dysfunction requiring renal replacement therapy. The cohort included 369 patients, with the composite outcome occurring in 125 cases (33.9%). Elastic net regression analysis identified 11 significant predictors of composite morbidity: higher packed red blood cell, platelet, cryoprecipitate and plasma volume from the critical period, preoperative functional dependence, any preoperative blood transfusion, VV ECMO bridge to transplant, and antifibrinolytic therapy were associated with higher risk of morbidity. Preoperative steroids, taller height, and primary chest closure were protective against composite morbidity.

Publisher

Wiley

Subject

Transplantation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3