An Exploration of an Improved Aggregate Student Growth Measure Using Data from Two States

Author:

Castellano Katherine E.1,McCaffrey Daniel F.1,Lockwood J. R.2

Affiliation:

1. Educational Testing Service

2. Duolingo

Abstract

AbstractThe simple average of student growth scores is often used in accountability systems, but it can be problematic for decision making. When computed using a small/moderate number of students, it can be sensitive to the sample, resulting in inaccurate representations of growth of the students, low year‐to‐year stability, and inequities for low‐incidence groups. An alternative designed to address these issues is to use an Empirical Best Linear Prediction (EBLP), which is a weighted average of growth score data from other years and/or subjects. We apply both approaches to two statewide datasets to answer empirical questions about their performance. The EBLP outperforms the simple average in accuracy and cross‐year stability with the exception that accuracy was not necessarily improved for very large districts in one of the states. In such exceptions, we show a beneficial alternative may be to use a hybrid approach in which very large districts receive the simple average and all others receive the EBLP. We find that adding more growth score data to the computation of the EBLP can improve accuracy, but not necessarily for larger schools/districts. We review key decision points in aggregate growth reporting and in specifying an EBLP weighted average in practice.

Publisher

Wiley

Subject

Psychology (miscellaneous),Applied Psychology,Developmental and Educational Psychology,Education

Reference14 articles.

1. Contrasting OLS and Quantile Regression Approaches to Student “Growth” Percentiles

2. Estimating the Accuracy of Relative Growth Measures Using Empirical Data

3. Colorado Department of Education. (2019).Scoring guide for 2019 district/school performance frameworks. Retrieved fromhttps://www.cde.state.co.us/accountability/performanceframeworks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3