Affiliation:
1. Department of Forest and Conservation Sciences University of British Columbia Vancouver British Columbia Canada
2. Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara California USA
Abstract
AbstractAquatic systems are warming and exceeding upper thermal limits (UTLs) for many fish species, yet understanding how they inform resilience to climate change is challenging. Using Pacific salmon (Oncorhynchus spp.) as a model, we conducted a systematic review involving 168 papers investigating UTL in five species. We found considerable variation in UTL among species, within species and across life stages; largely attributed to methodological approaches (e.g. CTmax/UILT, Aerobic/Cardiac Scope, Thermal Migration Barriers, Rearing Mortality, Thermal Preference/Avoidance). Given that each method has strengths and weaknesses owing to logistics, time scale and ecological realism, we offer a new framework for assessing vulnerability to warming that stresses the importance of considering UTL metrics in the context of intended use (i.e. the development of management guidelines, projections of future persistence and survival) and what aspect (physiological or behavioural) of thermal response a metric investigates. Comparing studies with identical UTL approaches revealed that within species, UTL was higher for populations historically encountering higher temperatures—suggesting local thermal adaptation. Within populations, UTL differed across the lifecycle, being highest in fry and lowest in embryo and migrating adults, but this was not universal. For spawning Pacific salmon, UTL has not been assessed and few studies have examined estuarine and marine stages. Ultimately, this data gap limits the life‐history thermal perspectives that can be drawn and may indicate a broader gap for all fishes, given that Pacific salmon are among the most well‐studied species. Our framework illustrates the inherent and methodological inconsistencies in UTL and offers a guide for how thermal limits can best be used to assess the warming tolerance and vulnerability of fishes.
Funder
Genome British Columbia
Natural Sciences and Engineering Research Council of Canada
Subject
Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献