Rhythmic histone acetylation acts in concert with day–night oscillation of the floral volatile metabolic network

Author:

Patrick Ryan M.12ORCID,Huang Xing‐Qi23ORCID,Dudareva Natalia123ORCID,Li Ying12ORCID

Affiliation:

1. Department of Horticulture and Landscape Architecture Purdue University West Lafayette IN 47907 USA

2. Purdue Center for Plant Biology Purdue University West Lafayette IN 47907 USA

3. Department of Biochemistry Purdue University West Lafayette IN 47907 USA

Abstract

Summary The biosynthesis of specialized metabolites is strictly regulated by environmental inputs such as the day–night cycle, but the underlying mechanisms remain elusive. In Petunia hybrida cv. Mitchell flowers, the biosynthesis and emission of volatile compounds display a diurnal pattern with a peak in the evening to attract nocturnal pollinators. Using petunia flowers as a model system, we found that chromatin level regulation, especially histone acetylation, plays an essential role in mediating the day–night oscillation of the biosynthetic gene network of specialized metabolites. By performing time‐course chromatin immunoprecipitation assays for histone modifications, we uncovered that a specific group of genes involved in the regulation, biosynthesis, and emission of floral volatile compounds, which displays the greatest magnitude in day–night oscillating gene expression, is associated with highly dynamic histone acetylation marks H3K9ac and H3K27ac. Specifically, the strongest oscillating genes featured a drastic removal of histone acetylation marks at night, potentially to shut down the biosynthesis of floral volatile compounds during the morning when they are not needed. Inhibiting daytime histone acetylation led to a compromised evening induction of these genes. Overall, our study suggested an active role of chromatin modification in the diurnal oscillation of specialized metabolic network.

Funder

Division of Molecular and Cellular Biosciences

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3