Bionic research of photothermal conversion performance based on butterfly wings

Author:

Liu Guomin1,Chen Haoqing1ORCID,Yin Yue1,Chen Yongxu1,Liu Yansong2

Affiliation:

1. Civil and Hydraulic Engineering Jilin Jianzhu University Jilin China

2. Bionic Science and Engineering Jilin University Jilin China

Abstract

AbstractAs the demand for sustainable construction practices increases, innovative ideas are being explored for the construction of insulated wall panels in contemporary buildings. The butterfly is a remarkable organism that uses a thermostatic mechanism to regulate its body temperature. The microstructure on the surface of its wing scales is responsible for reflecting incident light multiple times, extending the optical path, and increasing the light absorption, thus ensuring that its body temperature remains stable. This microstructure, also known as the light capture structure, has been simulated and analyzed using ANSYS software. The results indicate that this structure can improve the light‐thermal conversion efficiency in the illuminated region, thus increasing the local heat using light radiation. Additionally, due to the unique arrangement of units in the light capture structure, the heat exchange rate with air is significantly reduced, resulting in a low heat flux. Therefore, if this butterfly‐like trapped light structure is applied to the insulated wall panels, the requirements of modern architectural concepts can be realized.

Funder

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3