Affiliation:
1. Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology Guizhou University Guiyang China
2. Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology Hubei Engineering University Xiaogan China
Abstract
AbstractMicroRNAs (miRNAs) are conserved noncoding small RNAs that play essential regulatory roles in gene function by regulating target genes. Pardosa pseudoannulata is an important natural predatory enemy of insect pests and plays a significant role in controlling pests in rice fields, with temperature having a significant impact on their growth and development. To understand the response of miRNAs to temperature stress in P. pseudoannulata, we performed miRNA identification analyses of adult spiders exposed to 10°C and 40°C for 12 h, as low‐temperature and high‐temperature treatment groups, respectively. We obtained 54.74 M clean reads from 69.84 M raw reads after filtering out low‐quality reads, and 78 miRNAs including 13 novel miRNAs were identified from three small RNA libraries (10°C, 25°C and 40°C). At the low temperature and the high temperature, eight (one upregulated and seven downregulated) and ten (nine upregulated and one downregulated) differentially expressed miRNAs were identified, respectively. These differentially expressed miRNAs negatively regulated 43 and 12 target mRNA (the unigenes in our previous transcriptome sequence data) in response to low‐ and high‐temperature stress, respectively. These target genes are mainly involved in translation, ribosome structure and biotransformation, as well as the generation and conversion of energy. This study represents the first report of miRNA identification related to the Araneae spider species in response to temperature stress. These results will greatly facilitate our understanding of the physiological and biochemical mechanisms of spiders in response to temperature stress, which might be beneficial for the conservation and utilization of this species as an important natural insect enemy of pests in rice ecosystems.
Funder
National Natural Science Foundation of China
Guizhou Provincial Science and Technology Department
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献