Expression profiles and phylogenetic properties of venom gland‐specific viruses in some aculeate bees and wasps

Author:

Yoon Kyungjae Andrew1ORCID,Kim Woo Jin2,Shin Hee Jong23,Lee Si Hyeock14

Affiliation:

1. Research Institute of Agriculture and Life Sciences Seoul National University Seoul Republic of Korea

2. Genolution Inc. Seoul Republic of Korea

3. Department of Clinical Laboratory Sciences, College of Health Science Korea University Seoul Republic of Korea

4. Department of Agricultural Biology Seoul National University Seoul Republic of Korea

Abstract

AbstractTo identify viruses and compare their abundance levels in the venom glands of hymenopteran species, we conducted venom gland‐specific transcriptome assemblies and analyses of 22 aculeate bees and wasps and identified the RNA genomes of picornaviruses. Additionally, we investigated the expression patterns of viruses in the venom glands over time following capture. Honeybee‐infecting viruses, including the black queen cell virus (BQCV), the deformed wing virus (DWV) and the Israeli acute paralysis virus (IAPV), were highly expressed in the venom glands of Apis mellifera and social wasps. This finding suggests that the venom of bees and wasps is likely to contain these viruses, which can be transmitted horizontally between species through stinger use. Apis mellifera exhibited an increasing pattern of abundance levels for BQCV, DWV, IAPV and Triatovirus, whereas the social wasp Vespa crabro showed increasing abundance levels of IAPV and Triatovirus over different capture periods. This suggests that the venom glands of honeybees and wasps may provide suitable conditions for active viral replication and may be an organ for virus accumulation and transmission. Some viral sequences clearly reflected the phylogeny of aculeate species, implying host‐specific virus evolution. On the other hand, other viruses exhibited unique evolutionary patterns of phylogeny, possibly caused by specific ecological interactions. Our study provides insights into the composition and evolutionary properties of viral genes in the venom glands of certain aculeate bees and wasps, as well as the potential horizontal transmission of these viruses among bee and wasp species.

Funder

Rural Development Administration

Publisher

Wiley

Reference68 articles.

1. Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways

2. Three non‐toxic insect traps useful in trapping wasps enemies of honey bees;Bacandritsos N;Bulletin of Insectology,2006

3. BohartGE(1970)The evolution of parasitism among bees.Utah State University 41st 30p.

4. Near-optimal probabilistic RNA-seq quantification

5. fastp: an ultra-fast all-in-one FASTQ preprocessor

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3