PriMed: Private federated training and encrypted inference on medical images in healthcare

Author:

Gopalakrishnan Aparna1,Kulkarni Narayan P.1,Raghavendra Chethan B.1,Manjappa Raghavendra1,Honnavalli Prasad1,Eswaran Sivaraman2ORCID

Affiliation:

1. Department of Computer Science and Engineering PES University Bengaluru India

2. Department of Electrical and Computer Engineering Curtin University Miri Malaysia

Abstract

AbstractIn healthcare, patient information is a sparse critical asset considered as private data and is often protected by law. It is also the domain which is least explored in the field of Machine Learning. The main reason for this is to build efficient artificial intelligence (AI) based models for preliminary diagnosis of various diseases, it would require a large corpus of data which can be obtained by pooling in patient information from multiple sources. However, for these sources to agree to sharing their data across distributed systems for training algorithms and models, there has to be an assurance that there will be no disclosure of the personally identifiable information (PII) of the respective Data Owners. This paper proposes PriMed, an approach to build robust privacy preserving additions to convolutional neural networks (CNN) for training and performing inference on medical images without compromising privacy. Since privacy of the data is preserved, large amounts of data can be effectively accumulated to increase the accuracy and efficiency of AI models in the field of healthcare. This involves implementing a hybrid of privacy‐enhancing techniques like Federated Learning, Differential Privacy, and Homomorphic Encryption to provide a private and secure environment for learning through data.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preserving privacy in medical images while still enabling AI-driven research: A comprehensive review;2024 13th Mediterranean Conference on Embedded Computing (MECO);2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3