The orchestration of Machine Learning frameworks with data streams and GPU acceleration in Kafka‐ML: A deep‐learning performance comparative

Author:

Chaves Antonio Jesús1ORCID,Martín Cristian1,Díaz Manuel1

Affiliation:

1. ITIS Software Institute University of Málaga Málaga Spain

Abstract

AbstractMachine Learning (ML) applications need large volumes of data to train their models so that they can make high‐quality predictions. Given digital revolution enablers such as the Internet of Things (IoT) and the Industry 4.0, this information is generated in large quantities in terms of continuous data streams and not in terms of static datasets as it is the case with most AI (Artificial Intelligence) frameworks. Kafka‐ML is a novel open‐source framework that allows the complete management of ML/AI pipelines through data streams. In this article, we present new features for the Kafka‐ML framework, such as the support for the well‐known ML/AI framework PyTorch, as well as for GPU acceleration at different points along the pipeline. This pipeline will be described by taking a real Industry 4.0 use case in the Petrochemical Industry. Finally, a comprehensive evaluation with state‐of‐the‐art deep learning models will be carried out to demonstrate the feasibility of the platform.

Funder

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

European Commission

Ministerio de Ciencia, Innovación y Universidades

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Reference32 articles.

1. Algorithmia MLOps Official Webpage. (n.d.). Available from:https://algorithmia.com/mlops[last accessed May 2022].

2. Azure Machine Learning Official Webpage. (n.d.). Available from:https://azure.microsoft.com/es-es/services/machine-learning/[last accessed May 2022].

3. ClearML. (2019).Clearml ‐ your entire mlops stack in one open‐source tool. Retrieved fromhttps://clear.ml/Software available fromhttp://github.com/allegroai/clearml

4. cnvrg.io Official Webpage. (n.d.). Available from:https://cnvrg.io/[last accessed May 2022].

5. Reveal training performance mystery between TensorFlow and PyTorch in the single GPU environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3