Plant diversity and community age stabilize ecosystem multifunctionality

Author:

Dietrich Peter12ORCID,Ebeling Anne3ORCID,Meyer Sebastian T.4ORCID,Asato Ana Elizabeth Bonato12ORCID,Bröcher Maximilian3ORCID,Gleixner Gerd5ORCID,Huang Yuanyuan12ORCID,Roscher Christiane16ORCID,Schmid Bernhard7ORCID,Vogel Anja12,Eisenhauer Nico12ORCID

Affiliation:

1. German Centre of Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

2. Institute of Biology, Leipzig University Leipzig Germany

3. Institute of Ecology and Evolution, Friedrich Schiller University Jena Germany

4. School of Life Sciences Weihenstephan Technical University of Munich Munich Germany

5. Max Planck Institute for Biogeochemistry Jena Germany

6. Department Physiological Diversity Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany

7. Department of Geography, Remote Sensing Laboratories University of Zurich Zurich Switzerland

Abstract

AbstractIt is well known that biodiversity positively affects ecosystem functioning, leading to enhanced ecosystem stability. However, this knowledge is mainly based on analyses using single ecosystem functions, while studies focusing on the stability of ecosystem multifunctionality (EMF) are rare. Taking advantage of a long‐term grassland biodiversity experiment, we studied the effect of plant diversity (1–60 species) on EMF over 5 years, its temporal stability, as well as multifunctional resistance and resilience to a 2‐year drought event. Using split‐plot treatments, we further tested whether a shared history of plants and soil influences the studied relationships. We calculated EMF based on functions related to plants and higher‐trophic levels. Plant diversity enhanced EMF in all studied years, and this effect strengthened over the study period. Moreover, plant diversity increased the temporal stability of EMF and fostered resistance to reoccurring drought events. Old plant communities with shared plant and soil history showed a stronger plant diversity–multifunctionality relationship and higher temporal stability of EMF than younger communities without shared histories. Our results highlight the importance of old and biodiverse plant communities for EMF and its stability to extreme climate events in a world increasingly threatened by global change.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3