A global assessment of Bergmann's rule in mammals and birds

Author:

He Jiekun1ORCID,Tu Jiahao1,Yu Jiehua1,Jiang Haisheng1ORCID

Affiliation:

1. Spatial Ecology Lab, School of Life Sciences South China Normal University Guangzhou China

Abstract

AbstractBergmann's rule states that endotherms have a large body size in high latitudes and cold climates. However, previous empirical studies have reported mixed evidence on the relationships between body size and latitude, raising the question of why some clades of endotherms follow Bergmann's rule, whereas others do not. Here, we synthesized the interspecific relationships between body size and latitude among 16,187 endothermic species (5422 mammals and 10,765 birds) using Bayesian phylogenetic generalized linear mixed models to examine the strength and magnitude of Bergmann's rule. We further assessed the effect of biological and ecological factors (i.e., body mass categories, dietary guild, winter activity, habitat openness, and climate zone) on the variations in the body mass–latitude relationships by adding an interaction term in the models. Our results revealed a generally weak but significant adherence to Bergmann's rule among all endotherms at the global scale. Despite taxonomic variation in the strength of Bergmann's rule, the body mass of species within most animal orders showed an increasing trend toward high latitudes. Generally, large‐bodied, temperate species, non‐hibernating mammals, and migratory and open‐habitat birds tend to conform to Bergmann's rule more than their relatives do. Our results suggest that whether Bergmann's rule applies to a particular taxon is mediated by not only geographic and biological features, but also potential alternate strategies that species might have for thermoregulation. Future studies could explore the potential of integrating comprehensive trait data into phylogenetic comparative analysis to re‐assess the classic ecogeographic rules on a global scale.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Reference90 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New horizons for comparative studies and meta-analyses;Trends in Ecology & Evolution;2024-01

2. Morphological changes in hooded crows (Corvus cornix) related to urbanization;Frontiers in Ecology and Evolution;2023-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3