Effect of different materials for conventional and 3D‐printed models on the mechanical properties of ethylene‐vinyl acetate utilized for fabricating custom‐fit mouthguards

Author:

Rondón Airin Karelys Avendaño1ORCID,Lozada Maribí Isomar Terán1ORCID,Soares Priscilla Barbosa Ferreira2ORCID,Raposo Luis Henrique Araujo3ORCID,Soares Carlos José4ORCID

Affiliation:

1. School of Dentistry Federal University of Uberlândia Uberlândia Minas Gerais Brazil

2. Department of Periodontology and Implantology School of Dentistry, Universidade de Uberlândia Uberlândia Minas Gerais Brazil

3. Department of Occlusion and Prosthodontic School of Dentistry, Universidade de Uberlândia Uberlândia Minas Gerais Brazil

4. Department of Operative Dentistry and Dental Materials School of Dentistry, Universidade de Uberlândia Uberlândia Minas Gerais Brazil

Abstract

AbstractBackground/AimThe interaction between the ethylene‐vinyl acetate (EVA) with distinct materials utilized for obtaining dental models can affect the performance of resulting mouthguards. This study attempted to evaluate the effect of different materials for conventional (dental stone) or 3D‐printed (resin) models on EVA's physical and mechanical properties and surface characteristics.Material and MethodsEVA sheets (Bioart) were laminated over four model types: GIV, conventional Type IV dental stone model (Zhermak); ReG, resin‐reinforced Type IV dental stone model (Zero Stone); 3DnT, 3D resin printed model (Anycubic) without surface treatment; 3DT, 3D‐printed model (Anycubic) with water‐soluble gel (KY Jelly Lubricant, Johnson & Johnson) coating during post‐curing process. The EVA specimens were cut following the ISO 37‐II standard (n = 30). Shore A hardness was measured before and after plasticization on the contact (internal) or opposite (external) surfaces with the model. The breaking force (F, N), elongation (EL, mm), and ultimate tensile strength (UTS, MPa) were measured using a universal testing machine. Macro‐photography and scanning electron microscopy were adopted for classifying the EVA surface alteration. Data were analyzed by one‐way ANOVA with repeated measures, followed by Tukey's test (α = .05).ResultsPlasticization significantly decreased Shore A values for the tested EVA regardless of the model type (p < .001). Higher F, El, and UTS values were verified for the EVA with 3DT and GIV models compared to ReG and 3DnT (p < .001). 3DnT models resulted in severe surface alteration and a greater reduction of the mechanical properties of the EVA.ConclusionThe interaction of EVA with 3D resin‐printed models without surface treatment or resin‐reinforced Type IV dental stone models significantly affected the physical and mechanical properties of this material. The utilization of water‐soluble gel coating during the post‐curing process of 3D resin printed models improved the mechanical properties of the EVA, similarly when this material was plasticized over conventional Type IV dental stone model.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Subject

Oral Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3