Computational flow cytometry provides accurate assessment of measurable residual disease in chronic lymphocytic leukaemia

Author:

Nguyen Phillip C.1ORCID,Nguyen Vuong1,Baldwin Kylie1,Kankanige Yamuna12,Blombery Piers123ORCID,Came Neil12,Westerman David A.123

Affiliation:

1. Department of Pathology Peter MacCallum Cancer Centre Melbourne Victoria Australia

2. Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia

3. Department of Clinical Haematology Peter MacCallum Cancer Centre and Royal Melbourne Hospital Melbourne Victoria Australia

Abstract

SummaryUndetectable measurable residual disease (MRD) is associated with favourable clinical outcomes in chronic lymphocytic leukaemia (CLL). While assessment is commonly performed using multiparameter flow cytometry (MFC), this approach is associated with limitations including user bias and expertise that may not be widely available. Implementation of unsupervised clustering algorithms in the laboratory can address these limitations and have not been previously reported in a systematic quantitative manner. We developed a computational pipeline to assess CLL MRD using FlowSOM. In the training step, a self‐organising map was generated with nodes representing the full breadth of normal immature and mature B cells along with disease immunophenotypes. This map was used to detect MRD in multiple validation cohorts containing a total of 456 samples. This included an evaluation of atypical CLL cases and samples collected from two different laboratories. Computational MRD showed high correlation with expert analysis (Pearson's r > 0.99 for typical CLL). Binary classification of typical CLL samples as either MRD positive or negative demonstrated high concordance (>98%). Interestingly, computational MRD detected disease in a small number of atypical CLL cases in which MRD was not detected by expert analysis. These results demonstrate the feasibility and value of automated MFC analysis in a diagnostic laboratory.

Publisher

Wiley

Subject

Hematology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3