Insect pollination for most of angiosperm evolutionary history

Author:

Stephens Ruby E.12ORCID,Gallagher Rachael V.13ORCID,Dun Lily24ORCID,Cornwell Will4ORCID,Sauquet Hervé24ORCID

Affiliation:

1. School of Natural Sciences Macquarie University Sydney NSW 2109 Australia

2. National Herbarium of New South Wales (NSW) Royal Botanic Gardens and Domain Trust Sydney NSW 2000 Australia

3. Hawkesbury Institute for the Environment Western Sydney University Richmond NSW 2753 Australia

4. Evolution and Ecology Research Centre University of New South Wales Sydney NSW 2052 Australia

Abstract

Summary Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species‐level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect‐pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.

Funder

Australian Government

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3