Comparison of 3D positional accuracy of implant analogs in printed resin models versus conventional stone casts: Effect of implant angulation

Author:

Tan Shaun1,Tan Ming Yi2,Wong Keng Mun2,Maria Rahmat1,Tan Keson Beng Choon2ORCID

Affiliation:

1. Department of Restorative Dentistry National Dental Centre of Singapore Singapore Republic of Singapore

2. Faculty of Dentistry National University of Singapore Singapore Republic of Singapore

Abstract

AbstractPurposeTo study the effect of implant angulation on 3D linear and absolute angular distortions of implant analogs in printed resin models and conventional stone casts.Materials and methodsThree sectional master models with two implants with total inter‐implant angulations of 0°, 10°, and 20° were fabricated. For each master model, five conventional stone casts (CS) and printed resin models (PM) were fabricated (n = 5). Test models were made with nonsplinted impression copings and open tray polyether impressions for the CS groups and scan bodies scanned using an intraoral scanner for the PM groups. The physical positions of the implants and implant analogs were measured with a coordinate measuring machine. 3D linear distortion (ΔR) and absolute angular distortion (Absdθ) defined the 3D positional accuracy of the analogs in the test models. Univariate ANOVA was used to analyze data followed by post hoc tests (Tukey HSD, α = 0.05).ResultsMean ΔR was significantly greater for PM10 (73.5 ± 8.9 µm) and PM20 (65.5 ± 33.3 µm) compared to CS0 (16.8 ± 14.1 µm), CS10 (22.2 ± 13.0 µm), CS20 (15.6 ± 19.9 µm), and PM0 (23.9 ± 16.1 µm). For Absdθ, there were no significant differences between test groups.ConclusionsWith conventional stone casts, implant angulation had no significant effect on 3D linear and absolute angular distortions. Amongst printed resin models test groups, angulated implants had significantly greater ΔR. Amongst angulated implants test groups, printed resin models had significantly greater ΔR than conventional stone casts. Compared to the master model, all test groups, regardless of inter‐implant angulation, produced greater inter‐analog distances.

Publisher

Wiley

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3