A method to reduce the width of confidence intervals by using a normal scores transformation

Author:

O’Gorman T. W.1

Affiliation:

1. Department of Statistics Northern Illinois University Dekalb IL 60115 USA

Abstract

SummaryIn stating the results of their research, scientists usually want to publish narrow confidence intervals because they give precise estimates of the effects of interest. In many cases, the researcher would want to use the narrowest interval that maintains the desired coverage probability. In this manuscript, we propose a new method of finding confidence intervals that are often narrower than traditional confidence intervals for any individual parameter in a linear model if the errors are from a skewed distribution or from a long‐tailed symmetric distribution. If the errors are normally distributed, we show that the width of the proposed normal scores confidence interval will not be much greater than the width of the traditional interval. If the dataset includes predictor variables that are uncorrelated or moderately correlated then the confidence intervals will maintain their coverage probability. However, if the covariates are highly correlated, then the coverage probability of the proposed confidence interval may be slightly lower than the nominal value. The procedure is not computationally intensive and an R program is available to determine the normal scores 95% confidence interval. Whenever the covariates are not highly correlated, the normal scores confidence interval is recommended for the analysis of datasets having 50 or more observations.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3