PARG1 and EXA1 genes as possible components of the facultative epigenetic control of plant development

Author:

Kupriyanova Evgenia1ORCID,Manakhov Andrey234,Ezhova Tatiana1

Affiliation:

1. Faculty of Biology, Department of Genetics Lomonosov Moscow State University Moscow Russia

2. Center for Genetics and Life Science Sirius University of Science and Technology Sochi Russia

3. Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow Russia

4. Faculty of Biology, Centre for Genetics and Genetic Technologies Lomonosov Moscow State University Moscow Russia

Abstract

AbstractPlants are able to adjust their developmental program in response to incremental environmental changes by reprogramming the epigenomes of the cells. This process, known as facultative epigenetic developmental control, underlies plant developmental plasticity and the amazing diversity of morphotypes, which arises from the changes in cell fates. How plants determine when epigenome reprogramming should occur is largely unclear. Here, we show that the Arabidopsis PARG1 and EXA1 genes, encoding poly(ADP‐ribose) glycohydrolase and GYF domain protein involved in nonsense‐mediated mRNA decay, respectively, act synergistically in maintaining leaf cell identity. Loss of their function in Arabidopsis tae mutant triggers autoimmunity and wounding response, alters transcription of a number of epigenetic regulators, initiates the acquisition of pluripotency by cells of the developed leaf and ectopic outgrowths and buds formation. The dependence of the cell fate on the activity level of PARG1 and EXA1 genes indicates that these interacting genes may function as an important regulator of facultative epigenetic control of plant development.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3