Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72

Author:

Li Song1,Yue Sheng-Jie1ORCID,Huang Peng1,Feng Tong-Tong1,Zhang Hong-Yan2,Yao Rui-Lian1,Wang Wei13,Zhang Xue-Hong13,Hu Hong-Bo134

Affiliation:

1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China

2. Shanghai Nong Le Biological Products Company Limited (NLBP) Shanghai China

3. Shanghai Nongle Joint R&D Center on Biopesticides and Biofertilizers Shanghai Jiao Tong University Shanghai China

4. National Experimental Teaching Center for Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China

Abstract

Abstract Aims Phenazines, such as phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), 2-hydroxyphenazine-1-carboxylic acid (2-OH-PCA), 2-hydroxyphenazine (2-OH-PHZ), are a class of secondary metabolites secreted by plant-beneficial Pseudomonas. Ps. chlororaphis GP72 utilizes glycerol to synthesize PCA, 2-OH-PCA and 2-OH-PHZ, exhibiting broad-spectrum antifungal activity. Previous studies showed that the addition of dithiothreitol (DTT) could increase the phenazines production in Ps. chlororaphis GP72AN. However, the mechanism of high yield of phenazine by adding DTT is still unclear. Methods and Results In this study, untargeted and targeted metabolomic analysis were adopted to determine the content of metabolites. The results showed that the addition of DTT to GP72AN affected the content of metabolites of central carbon metabolism, shikimate pathway and phenazine competitive pathway. Transcriptome analysis was conducted to investigate the changed cellular process, and the result indicated that the addition of DTT affected the expression of genes involved in phenazine biosynthetic cluster and genes involved in phenazine competitive pathway, driving more carbon flux into phenazine biosynthetic pathway. Furthermore, genes involved in antioxidative stress, phosphate transport system and mexGHI-opmD efflux pump were also affected by adding DTT. Conclusion This study demonstrated that the addition of DTT altered the expression of genes related to phenazine biosynthesis, resulting in the change of metabolites involved in central carbon metabolism, shikimate pathway and phenazine competitive pathway. Significance and Impact of the Study This work expands the understanding of high yield of phenazine by the addition of DTT and provides several targets for increasing phenazine production.

Funder

China National Key Research and Development Program

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3