NDUFV1 attenuates renal ischemia–reperfusion injury by improving mitochondrial homeostasis

Author:

Li Lu12,Zhang Lingling12,Cao Yingjie12,Chen Xu1,Gong Haifeng12,Ma Yidan12,Gui Yuanyuan12,Xiang Tianya12,Liu Jianxing1,Huang Xinzhong1ORCID

Affiliation:

1. Department of Nephrology Affiliated Hospital of Nantong University 20 Xisi Road Nantong Jiangsu 226001 China

2. Medical School of Nantong University Nantong 226001 China

Abstract

AbstractImpaired mitochondrial function and dysregulated energy metabolism have been shown to be involved in the pathological progression of kidney diseases such as acute kidney injury (AKI) and diabetic nephropathy. Hence, improving mitochondrial function is a promising strategy for treating renal dysfunction. NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an important subunit of mitochondrial complex I. In the present study, we found that NDUFV1 was reduced in kidneys of renal ischemia/reperfusion (I/R) mice. Meanwhile, renal I/R induced kidney dysfunction as evidenced by increases in BUN and serum creatinine, severe injury of proximal renal tubules, oxidative stress, and cell apoptosis. All these detrimental outcomes were attenuated by increased expression of NDUFV1 in kidneys. Moreover, knockdown of Ndufv1 aggravated cell insults induced by H2O2 in TCMK‐1 cells, which further confirmed the renoprotective roles of NDUFV1. Mechanistically, NDUFV1 improved the integrity and function of mitochondria, leading to reduced oxidative stress and cell apoptosis. Overall, our data indicate that NDUFV1 has an ability to maintain mitochondrial homeostasis in AKI, suggesting therapies by targeting mitochondria are useful approaches for dealing with mitochondrial dysfunction associated renal diseases such as AKI.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3