A ketogenic diet improves vascular hyperpermeability in type 2 diabetic mice by downregulating vascular pescadillo1 expression

Author:

Wang Song1,Zhou Jielin23,Lu Jing2,Lin Yan4,Liu Shuaishuai5,Chen Keyang2ORCID

Affiliation:

1. Department of Ophthalmology, The Second Affiliated Hospital Anhui Medical University Hefei Anhui China

2. Department of Nutrition and Food Hygiene, School of Public Health Anhui Medical University Hefei Anhui China

3. Department of Oncology, Anhui Provincial Cancer Hospital The First Affiliated Hospital of the University of Science and Technology of China Hefei Anhui China

4. Department of Health Inspection and Quarantine, School of Public Health Anhui Medical University Hefei Anhui China

5. Department of Diabetic Retinopathy AIER Hefei Eye Hospital Affiliated to Anhui Medical University Hefei Anhui China

Abstract

AbstractThe role of pescadillo1 (PES1) in regulating vascular permeability has been unknown. This study probes the role of PES1 and its mediated molecular mechanism in modulating vascular hyperpermeability in diabetic mice. Male C57BL/6J and db/db mice were fed a standard diet and a ketogenic diet (KD). Meanwhile, mouse vascular endothelial cells (MVECs) were treated with β‐hydroxybutyric acid (β‐HB), Pes1 siRNA or a Pes1 overexpression plasmid. Additionally, knockout (KO) of Pes1 in mice was applied. After 12 weeks of feedings, enhanced vascular PES1 expression in diabetic mice was inhibited by the KD. The suppression of PES1 was also observed in β‐HB‐treated MVECs. In mice with Pes1 KO, the levels of vascular VEGF and PES1 were attenuated, while the levels of vascular VE‐cadherin, Ang‐1 and Occludin were upregulated. Similar outcomes also occurred after the knockdown of Pes1 in cultured MVECs, which were opposite to the effects induced by PES1 overexpression in MVECs. In vitro and in vivo experiments showed that high glucose concentration‐induced increases in vascular paracellular permeability declined after MVECs were treated by β‐HB or by knockdown of Pes1. In contrast, increases in vascular permeability were induced by overexpression of Pes1, which were suppressed by coadministration of β‐HB in cultured endothelial cells. Similarly declines in vascular permeability were found by Pes1 knockdown in diabetic mice. Mechanistically, β‐HB decreased PES1‐facilitated ubiquitination of VE‐cadherin. The KD suppressed the diabetes‐induced increase in PES1, which may result in vascular hyperpermeability through ubiquitination of VE‐cadherin in type 2 diabetic mice.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3