NF‐κB/NLRP3 inflammasome axis and risk of Parkinson's disease in Type 2 diabetes mellitus: A narrative review and new perspective

Author:

Alrouji Mohammed1,Al‐kuraishy Hayder M.2,Al‐Gareeb Ali I.2,Alexiou Athanasios34ORCID,Papadakis Marios5,Jabir Majid S.6,Saad Hebatallah M.7ORCID,Batiha Gaber El‐Saber8

Affiliation:

1. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences Shaqra University Shaqra Saudi Arabia

2. Department of Clinical Pharmacology and Medicine, College of Medicine ALmustansiriyia University Baghdad Iraq

3. Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia

4. AFNP Med Wien Austria

5. Department of Surgery II University Hospital Witten‐Herdecke, University of Witten‐Herdecke Wuppertal Germany

6. Applied Science Department University of Technology Baghdad Iraq

7. Department of Pathology, Faculty of Veterinary Medicine Matrouh University Matrouh Egypt

8. Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine Damanhour University Damanhour Egypt

Abstract

AbstractParkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia‐induced oxidative stress and the release of pro‐inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM‐induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF‐κB) and the nod‐like receptor pyrin 3 (NLRP3) inflammasome. NF‐κB is implicated in the pathogenesis of T2DM, and activation of NF‐κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α‐synuclein and degeneration of dopaminergic neurons in the SN. Increasing α‐synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)‐1β followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF‐κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic β‐cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF‐κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3