Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes

Author:

Luo Wenfeng123ORCID,Deng Jie4,He Jiecheng12,Yin Liang1,You Rong1,Zhang Lingkun1,Shen Jian2,Han Zeping2,Xie Fangmei2,He Jinhua2,Guan Yanqing12

Affiliation:

1. School of Life Science South China Normal University Guangzhou China

2. South China Normal University‐Panyu Central Hospital Joint Laboratory of Translational Medical Research Panyu Central Hospital Guangzhou China

3. Medical Imaging Institute of Panyu Guangzhou China

4. Shunde Polytecnic Foshan China

Abstract

AbstractFenugreek is an ancient herb that has been used for centuries to treat diabetes. However, how the fenugreek‐derived chemical compounds work in treating diabetes remains unclarified. Herein, we integrate molecular docking and network pharmacology to elucidate the active constituents and potential mechanisms of fenugreek against diabetes. First, 19 active compounds from fenugreek and 71 key diabetes‐related targets were identified through network pharmacology analysis. Then, molecular docking and simulations results suggest diosgenin, luteolin and quercetin against diabetes via regulation of the genes ESR1, CAV1, VEGFA, TP53, CAT, AKT1, IL6 and IL1. These compounds and genes may be key factors of fenugreek in treating diabetes. Cells results demonstrate that fenugreek has good biological safety and can effectively improve the glucose consumption of IR‐HepG2 cells. Pathway enrichment analysis revealed that the anti‐diabetic effect of fenugreek was regulated by the AGE‐RAGE and NF‐κB signalling pathways. It is mainly associated with anti‐oxidative stress, anti‐inflammatory response and β‐cell protection. Our study identified the active constituents and potential signalling pathways involved in the anti‐diabetic effect of fenugreek. These findings provide a theoretical basis for understanding the mechanism of the anti‐diabetic effect of fenugreek. Finally, this study may help for developing anti‐diabetic dietary supplements or drugs based on fenugreek.

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3