Fast Numerical Coarsening with Local Factorizations

Author:

He Zhongyun1ORCID,Pérez Jesús1ORCID,Otaduy Miguel A.1ORCID

Affiliation:

1. Universidad Rey Juan Carlos Madrid Spain

Abstract

AbstractNumerical coarsening methods offer an attractive methodology for fast simulation of objects with high‐resolution heterogeneity. However, they rely heavily on preprocessing, and are not suitable when objects undergo dynamic material or topology updates. We present methods that largely accelerate the two main processes of numerical coarsening, namely training data generation and the optimization of coarsening shape functions, and as a result we manage to leverage runtime numerical coarsening under local material updates. To accelerate the generation of training data, we propose a domain‐decomposition solver based on substructuring that leverages local factorizations. To accelerate the computation of coarsening shape functions, we propose a decoupled optimization of smoothness and data fitting. We evaluate quantitatively the accuracy and performance of our proposed methods, and we show that they achieve accuracy comparable to the baseline, albeit with speed‐ups of orders of magnitude. We also demonstrate our methods on example simulations with local material and topology updates.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3