Transient vegetation dynamics in a tropical coastal wetland: Sea‐level rise, glycophyte retreat, and incipient loss in plant diversity

Author:

Ross Michael S.12ORCID,Stoffella Susana L.1ORCID,Ruiz Pablo L.3,Subedi Suresh C.4ORCID,Meeder John F.1ORCID,Sah Jay P.1ORCID,Vidales Rosario2ORCID,Minchin Peter R.5,Scinto Leonard J.2ORCID,Zhang Keqi26

Affiliation:

1. Institute of Environment FIU Miami Florida USA

2. Department of Earth and Environment FIU Miami Florida USA

3. South Florida Natural Resource Center Everglades and Dry Tortugas National Parks Homestead Florida USA

4. Department of Biology Norfolk State University Norfolk Virginia USA

5. Southern Illinois University Edwardsville (Professor Emeritus) Edwardsville Illinois USA

6. International Hurricane Research Center FIU Miami Florida USA

Abstract

AbstractAim and QuestionsSea‐level rise has been responsible for extensive vegetation changes in coastal areas worldwide. The intent of our study was to analyze vegetation dynamics of a South Florida coastal watershed within an explicit spatiotemporal framework that might aid in projecting the landscape's future response to restoration efforts. We also asked whether recent transgression by mangroves and other halophytes has resulted in reduced plant diversity at local or subregional scales.LocationFlorida’'s Southeast Saline Everglades, USA.MethodsWe selected 26 locations, representing a transition zone between sawgrass marsh and mangrove swamp, that was last sampled floristically in 1995. Within this transition zone, leading‐ and trailing‐edge subzones were defined based on plant composition in 1995. Fifty‐two site × time combinations were classified and then ordinated to examine vegetation–environment relationships using 2016 environmental data. We calculated alpha‐diversity using Hill numbers or Shannon–Weiner index species equivalents and compared these across the two surveys. We used a multiplicative diversity partition to determine beta‐diversity from landscape‐scale (gamma) diversity in the entire dataset or in each subzone.ResultsMangrove and mangrove associates became more important in both subzones: through colonization and establishment in the leading edge, and through population growth combined with the decline of freshwater species in the trailing edge. Alpha‐diversity increased significantly in the leading edge and decreased nominally in the trailing edge, while beta‐diversity declined slightly in both subzones as well as across the study area.ConclusionsRecent halophyte encroachment in the Southeast Saline Everglades continues a trend evident for almost a century. While salinity is an important environmental driver, species’ responses suggest that restoration efforts based on supplementing freshwater delivery will not reverse a trend that depends on multiple interacting factors. Sea‐level‐rise‐driven taxonomic homogenization in coastal wetland communities develops slowly, lagging niche‐based changes in community structure and composition.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3