Affiliation:
1. Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences Shanghai China
2. Department of Electronic Engineering, School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China
Abstract
Abstract
Aims
The aim of this study was to develop a novel approach using lateral flow recombinase polymerase amplification (RPA-LF) combined with immunomagnetic separation (IMS) for the rapid detection of Staphylococcus aureus in milk.
Methods and results
Under optimum conditions, the average capture efficiency values for S. aureus strains (104 colony-forming units [CFU] per ml) was above 95.0% in PBST and ~80% in milk within 45 min with 0.7 mg immunomagnetic beads. The RPA-LF assay, which comprised DNA amplification via RPA at 39°C for 10 min and visualization of the amplicons through LF strips for 5 min, detected S. aureus within 15 min. The method only detected S. aureus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. Sensitivity experiments confirmed a detection limit of RPA-LF assay as low as 600 fg per reaction for the S. aureus genome (corresponding to approximately 36 CFU of S. aureus), which was about 16.7-fold more sensitive than that of the conventional polymerase chain reaction method. When RPA-LF was used in combination with IMS to detect S. aureus inoculated into artificially contaminated milk, it exhibited a detection limit of approximately 40 CFU per reaction.
Conclusions
The newly developed IMS-RPA-LF method enabled detection of S. aureus at levels as low as 40 CFU per reaction in milk samples without culture enrichment for an overall testing time of only 70 min.
Significance and Impact of the Study
The newly developed IMS-lateral flow RPA-LF assay effectively combines sample preparation, amplification and detection into a single platform. Because of its high sensitivity, specificity and speed, the IMS-RPA-LF assay will have important implications for the rapid detection of S. aureus in contaminated food.
Funder
Basic Foundation for Scientific Research of State-level Public Welfare Institutes of China
International Scientific and Technological Innovation Cooperation
Shanghai Agriculture Applied Technology Development Program
Shanghai Science and Technology Commission Research Project
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,General Medicine,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献