CaSnRK2.4‐mediated phosphorylation of CaNAC035 regulates abscisic acid synthesis in pepper (Capsicum annuum L.) responding to cold stress

Author:

Zhang Huafeng1,Pei Yingping1,Zhu Feilong1,He Qiang1,Zhou Yunyun1,Ma Bohui1,Chen Xiaoqing1,Guo Jiangbai1,Khan Abid2,Jahangir Maira1,Ou Lijun3,Chen Rugang14ORCID

Affiliation:

1. College of Horticulture Northwest A&F University Yangling 712100 China

2. Department of Horticulture The University of Haripur Haripur 22620 Pakistan

3. College of Horticulture Hunan Agricultural University Changshai 410125 China

4. Shaanxi Engineering Research Center for Vegetables Yangling 712100 China

Abstract

SUMMARYPlant NAC transcription factors play a crucial role in enhancing cold stress tolerance, yet the precise molecular mechanisms underlying cold stress remain elusive. In this study, we identified and characterized CaNAC035, an NAC transcription factor isolated from pepper (Capsicum annuum) leaves. We observed that the expression of the CaNAC035 gene is induced by both cold and abscisic acid (ABA) treatments, and we elucidated its positive regulatory role in cold stress tolerance. Overexpression of CaNAC035 resulted in enhanced cold stress tolerance, while knockdown of CaNAC035 significantly reduced resistance to cold stress. Additionally, we discovered that CaSnRK2.4, a SnRK2 protein, plays an essential role in cold tolerance. In this study, we demonstrated that CaSnRK2.4 physically interacts with and phosphorylates CaNAC035 both in vitro and in vivo. Moreover, the expression of two ABA biosynthesis‐related genes, CaAAO3 and CaNCED3, was significantly upregulated in the CaNAC035‐overexpressing transgenic pepper lines. Yeast one‐hybrid, Dual Luciferase, and electrophoretic mobility shift assays provided evidence that CaNAC035 binds to the promoter regions of both CaAAO3 and CaNCED3 in vivo and in vitro. Notably, treatment of transgenic pepper with 50 μm Fluridone (Flu) enhanced cold tolerance, while the exogenous application of ABA at a concentration of 10 μm noticeably reduced cold tolerance in the virus‐induced gene silencing line. Overall, our findings highlight the involvement of CaNAC035 in the cold response of pepper and provide valuable insights into the molecular mechanisms underlying cold tolerance. These results offer promising prospects for molecular breeding strategies aimed at improving cold tolerance in pepper and other crops.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3