Affiliation:
1. Centre for Crop and Disease Management Curtin University Perth Western Australia Australia
2. Centre for Applied Bioinformatics and School of Biological Science University of Western Australia Perth Western Australia Australia
Abstract
SummaryIn plants, growth and defence are controlled by many molecular pathways that are antagonistic to one another. This results in a ‘growth‐defence trade‐off’, where plants temporarily reduce growth in response to pests or diseases. Due to this antagonism, genetic variants that improve resistance often reduce growth and vice versa. Therefore, in natural populations, the most disease resistant individuals are often the slowest growing. In crops, slow growth may translate into a yield penalty, but resistance is essential for protecting yield in the presence of disease. Therefore, plant breeders must balance these traits to ensure optimal yield potential and yield stability. In crops, both qualitative and quantitative disease resistance are often linked with genetic variants that cause yield penalties, but this is not always the case. Furthermore, both crop yield and disease resistance are complex traits influenced by many aspects of the plant's physiology, morphology and environment, and the relationship between the molecular growth‐defence trade‐off and disease resistance‐yield antagonism is not well‐understood. In this article, we highlight research from the last 2 years on the molecular mechanistic basis of the antagonism between defence and growth. We then discuss the interaction between disease resistance and crop yield from a breeding perspective, outlining the complexity and nuances of this relationship and where research can aid practical methods for simultaneous improvement of yield potential and disease resistance.
Funder
Australian Research Council
Grains Research and Development Corporation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献