Fossil and modern penguin tarsometatarsi: cavities, vascularity, and resilience

Author:

JADWISZCZAK Piotr1ORCID,KRÜGER Ashley2ORCID,MÖRS Thomas2ORCID

Affiliation:

1. Faculty of Biology University of Bialystok Bialystok Poland

2. Department of Palaeobiology Swedish Museum of Natural History Stockholm Sweden

Abstract

AbstractPenguin tarsometatarsi are shortened and flattened, and studies devoted to the internal characteristics of these composite bones are very limited. Therefore, we present here a comprehensive, x‐ray‐microscopy‐based analysis based on tarsometatarsi of Eocene stem Sphenisciformes from Seymour Island (Antarctic Peninsula) as well as recent Aptenodytes forsteri, A. patagonicus, and Pygoscelis adeliae penguins. Our study focuses on four aspects: size variability of the medullary cavities, vascularization patterns with emphasis on diaphyseal vessels, cross‐sectional anisotropy, and diaphyseal resistance to bending forces. Small‐sized Eocene penguins (Delphinornis and Marambiornopsis) show well‐developed tarsometatarsal medullary cavities, whereas the cavities of “giant” early Sphenisciformes are either smaller (Palaeeudyptes) or show a conspicuous intermetatarsal size gradient (Anthropornis). Extant penguins exhibit a decrease in cavity dimensions as their body size increases. Distributional tendencies of primary diaphyseal nutrient foramina are quite similar in the smaller Delphinornis, Marambiornopsis, and extant Pygoscelis on one side and in Palaeeudyptes and extant Aptenodytes on the other. Anthropornis shows a unique, plesiomorphic pattern with a prevalence of plantar blood supply to the metatarsals. The diaphyseal nutrient canals diverge in orientation, some obliquely away from the proximal part, others with disparate trajectories. Cross‐sectional anisotropy along the tarsometatarsal shaft generally appears to be rather low. Clustering of coherency curves along certain tarsometatarsal segments may reflect a selection process that exerts a significant influence within biomechanically crucial sections. Diaphyseal resistance to mediolateral bending forces is explicitly more efficient in extant penguins than in Eocene Sphenisciformes. This can be interpreted as an adaptation to the waddling gait of extant penguins.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3