Environmental factors and host sex influence the skin microbiota structure of Hong Kong newt (Paramesotriton hongkongensis) in a coldspot of chytridiomycosis in subtropical East Asia

Author:

WAN Bowen1,CHEN Guoling1ORCID,POON Emily Shui Kei1ORCID,FUNG Hon Shing1,LAU Anthony2ORCID,SIN Simon Yung Wa1ORCID

Affiliation:

1. School of Biological Sciences The University of Hong Kong Hong Kong China

2. Science Unit Lingnan University Hong Kong China

Abstract

AbstractChytridiomycosis, an infectious skin disease caused by the chytrid fungi, Batrachochytrium dendrobatidis and B. salamandrivorans, poses a significant threat to amphibian biodiversity worldwide. Antifungal bacteria found on the skin of chytrid‐resistant amphibians could potentially provide defense against chytridiomycosis and lower mortality rates among resistant individuals. The Hong Kong newt (Paramesotriton hongkongensis) is native to East Asia, a region suspected to be the origin of chytrids, and has exhibited asymptomatic infection, suggesting a long‐term coexistence with the chytrids. Therefore, the skin microbiota of this resistant species warrant investigation, along with other factors that can affect the microbiota. Among the 149 newts sampled in their natural habitats in Hong Kong, China, putative antifungal bacteria were found in all individuals. There were 314 amplicon sequence variants distributed over 25 genera of putative antifungal bacteria; abundant ones included Acinetobacter, Flavobacterium, and Novosphingobium spp. The skin microbiota compositions were strongly influenced by the inter‐site geographical distances. Despite inter‐site differences, we identified some core skin microbes across sites that could be vital to P. hongkongensis. The dominant cores included the family Comamonadaceae, family Chitinophagaceae, and class Betaproteobacteria. Moreover, habitat elevation and host sex also exhibited significant effects on skin microbiota compositions. The antifungal bacteria found on these newts offer an important resource for conservation against chytridiomycosis, such as developing probiotic treatments for susceptible species.

Funder

University of Hong Kong

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3