Considering dispersal costs to understand fish community dissimilarity in a high‐gradient basin of North America

Author:

de Rezende Breno Laio Medeiros1ORCID,Dala‐Corte Renato Bolson12ORCID,Melo Adriano S.12ORCID

Affiliation:

1. Programa de Pós‐Graduação em Ecologia e Evolução, Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia GO Brazil

2. Departamento de Ecologia, Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia GO Brazil

Abstract

AbstractFreshwater fish metacommunities are best understood when considering the dendritic structure of riverine networks. The dendritic structure imposes restrictions to dispersal associated with the connectivity. Many structures restrict the movement of fish even more, such as dams and the terrain slope (dispersal costs). We investigated the influence of environmental predictors and dispersal costs on the beta diversity of freshwater fishes from the Upper Tennessee River using Generalised Dissimilarity Modelling (GDM). In addition, we tested the effects of asymmetrical dispersal costs (high costs for upstream dispersal) on the nestedness of native and non‐native fishes. Environmental predictors were more important than dispersal costs for explaining the overall fish dissimilarity in the GDM models, with the turnover capturing most of the explanation compared to the species richness difference. Dam heights were the most important dispersal cost variable in the GDM, mainly for species turnover. Overall dissimilarity of the native fish subset was better explained by environmental and dispersal variables than non‐native fish (20.03% vs. 8.41%). Considering the native species assemblage subset, dispersal cost related to maximum channel slope between pairs of sites and watercourse distance increased the nestedness of adjacent upstream–downstream sites, whereas those attributed to dams reduced the nestedness. The results support that dams increase overall dissimilarity in the native fish metacommunity of the Upper Tennessee basin, but also reduce the nestedness of adjacent sites. Our findings improve the knowledge on how mechanisms and processes associated with dispersal costs in watersheds under the effects of dams create patterns of dissimilarity and nestedness.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3