Evolution of mitogenomic gene order in Orthoptera

Author:

Gaugel Sarah Maria12ORCID,Hawlitschek Oliver12,Dey Lara‐Sophie12,Husemann Martin12ORCID

Affiliation:

1. University of Hamburg Hamburg Germany

2. Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg Germany

Abstract

AbstractMitochondrial gene order has contributed to the elucidation of evolutionary relationships in several animal groups. It generally has found its application as a phylogenetic marker for deep nodes. Yet, in Orthoptera limited research has been performed on the gene order, although the group represents one of the oldest insect orders. We performed a comprehensive study on mitochondrial genome rearrangements (MTRs) within Orthoptera in the context of mitogenomic sequence‐based phylogeny. We used 280 published mitogenome sequences from 256 species, including three outgroup species, to reconstruct a molecular phylogeny. Using a heuristic approach, we assigned MTR scenarios to the edges of the phylogenetic tree and reconstructed ancestral gene orders to identify possible synapomorphies in Orthoptera. We found all types of MTRs in our dataset: inversions, transpositions, inverse transpositions, and tandem‐duplication/random loss events (TDRL). Most of the suggested MTRs were in single and unrelated species. Out of five MTRs which were unique in subgroups of Orthoptera, we suggest four of them to be synapomorphies; those were in the infraorder Acrididea, in the tribe Holochlorini, in the subfamily Pseudophyllinae, and in the two families Phalangopsidae and Gryllidae or their common ancestor (leading to the relationship ((Phalangopsidae + Gryllidae) + Trigonidiidae)). However, similar MTRs have been found in distant insect lineages. Our findings suggest convergent evolution of specific mitochondrial gene orders in several species, deviant from the evolution of the mitogenome DNA sequence. As most MTRs were detected at terminal nodes, a phylogenetic inference of deeper nodes based on MTRs is not supported. Hence, the marker does not seem to aid resolving the phylogeny of Orthoptera, but adds further evidence for the complex evolution of the whole group, especially at the genetic and genomic levels. The results indicate a high demand for more research on patterns and underlying mechanisms of MTR events in Orthoptera.

Publisher

Wiley

Subject

Insect Science,Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3