Co‐culture of iNeurons with primary human skin cells provides a reliable model to examine intercellular communication

Author:

Labarrade Florian1ORCID,Botto Jean‐Marie1,Imbert Isabelle1

Affiliation:

1. Ashland Specialties France Sophia Antipolis France

Abstract

AbstractObjectiveThe skin is a sensory organ, densely innervated with various types of sensory nerve endings, capable of discriminating touch, environmental sensations, proprioception, and physical affection. Neurons communication with skin cells confer to the tissue the ability to undergo adaptive modifications during response to environmental changes or wound healing after injury. Thought for a long time to be dedicated to the central nervous system, the glutamatergic neuromodulation is increasingly described in peripheral tissues. Glutamate receptors and transporters have been identified in the skin. There is a strong interest in understanding the communication between keratinocytes and neurons, as the close contacts with intra‐epidermal nerve fibers is a favorable site for efficient communication. To date, various coculture models have been described. However, these models were based on non‐human or immortalized cell line. Even the use of induced pluripotent stem cells (iPSCs) is posing limitations because of epigenetic variations during the reprogramming process.MethodsIn this study, we performed small molecule‐driven direct conversion of human skin primary fibroblasts into induced neurons (iNeurons).ResultsThe resulting iNeurons were mature, showed pan‐neuronal markers, and exhibited a glutamatergic subtype and C‐type fibers characteristics. Autologous coculture of iNeurons with human primary keratinocytes, fibroblasts, and melanocytes was performed and remained healthy for many days, making possible to study the establishment of intercellular interactions.ConclusionHere, we report that iNeurons and primary skin cells established contacts, with neurite ensheathment by keratinocytes, and demonstrated that iNeurons cocultured with primary skin cells provide a reliable model to examine intercellular communication.

Funder

Ashland

Publisher

Wiley

Subject

Dermatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3