Functional allele of a MATE gene selected during domestication modulates seed color in chickpea

Author:

Thakro Virevol1,Varshney Nidhi1,Malik Naveen2,Daware Anurag1,Srivastava Rishi1,Mohanty Jitendra K.1,Basu Udita1,Narnoliya Laxmi1,Jha Uday Chand3,Tripathi Shailesh34,Tyagi Akhilesh K.15ORCID,Parida Swarup K.1ORCID

Affiliation:

1. National Institute of Plant Genome Research (NIPGR) Aruna Asaf Ali Marg New Delhi 110067 India

2. Amity Institute of Biotechnology Amity University Rajasthan Jaipur 303002 India

3. Indian Institute of Pulses Research (IIPR) Kanpur 208024 India

4. Division of Genetics Indian Agricultural Research Institute (IARI) New Delhi 110012 India

5. Department of Plant Molecular Biology University of Delhi South Campus New Delhi 110021 India

Abstract

SUMMARYSeed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high‐density mapping, map‐based cloning, association analysis, and molecular haplotyping in an inter‐specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8‐bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8‐bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8‐bp insertion containing the third cis‐regulatory RY‐motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker‐assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3