Ca substitution in Ca1‐xSrxTi0.8Fe0.2O3‐δ perovskites for oxygen transport membranes: A promising strategy to improve CO2 tolerance

Author:

Fedeli Paolo1ORCID,Nigroni Veronica12,Malgrati Enrico1,Cavaliere Angelo1,Cammi Andrea1,Drago Francesca1

Affiliation:

1. Materials and Generation Technologies Department Ricerca sul Sistema Energetico ‐ RSE SpA Milan Italy

2. Department of Chemistry University of Parma Parma Italy

Abstract

AbstractOxygen transport membranes (OTMs) can be operated as efficient oxygen separators and oxygen distributors, but their diffusion is hampered by the lack of appropriate materials with sufficient chemical stability in operating conditions. Mixed ionic‐electronic conducting SrTiO3‐based perovskite are a promising option due to their remarkable resistance in reducing environments, but they are prone to degradation in CO2‐containing atmospheres owing to carbonate formation. In this study, we propose new Ca1‐xSrxTi0.8Fe0.2O3‐δ perovskites where the Sr2+ cation is partially substituted by Ca2+ to improve the tolerance to CO2. We show that, upon increasing Ca molar fraction, the phase stability in CO2 is progressively improved thanks to the mitigation of carbonate growth. The manufacturing process of the membranes benefits from Ca introduction, which promotes powder densification during sintering. A membrane made of Ca0.1Sr0.9Ti0.8Fe0.2O3‐δ exhibited a stable oxygen flux for 340 h at 900°C when swept with He and for 170 h at 900°C when swept with a gaseous stream containing 40% CO2. Post‐test characterizations confirmed the retention of the crystal structure after the long‐term permeation tests. Ca‐substituted SrTi1‐yFeyO3‐δ perovskites can be considered promising materials for OTMs working in harsh environments and in the presence of CO2.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3