Thermochemical interactions between yttria‐stabilized zirconia and molten lunar regolith simulants

Author:

Yu Kevin1ORCID,Stokes Jamesa2ORCID,Harder Bryan2ORCID,Reidy Lorlyn3,Faber Katherine T.1ORCID

Affiliation:

1. Division of Engineering and Applied Science California Institute of Technology Pasadena California USA

2. NASA Glenn Research Center Cleveland Ohio USA

3. NASA Marshall Space Flight Center Huntsville Alabama USA

Abstract

AbstractOxygen produced through in‐situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, which is primarily a mixture of oxide minerals; however, both processes require operating temperatures of 1600°C to melt lunar regolith and dissociate the molten oxides. These conditions limit the use of many oxide refractory materials, such as Al2O3 and MgO, due to rapid degradation resulting from reactions between the refractory materials and molten lunar regolith. Yttria‐stabilized zirconia (YSZ) is shown here to be a promising refractory oxide to provide containment of molten regolith while demonstrating limited reactivity. This work focuses on corrosion studies of YSZ powders and dense YSZ crucibles in contact with molten lunar maria and highlands regolith simulants at 1600°C. The interactions between YSZ and molten regolith were characterized using scanning electron microscopy/energy dispersive spectroscopy, X‐ray diffraction, and electron backscatter diffraction. A FactSage thermochemical model was created for comparison with the experimental results. These combined analyses suggest that lunar maria regolith will degrade the YSZ faster than the lunar highlands regolith due to the lower viscosity of the maria regolith. The feasibility of long‐term molten regolith containment with YSZ is discussed based on the YSZ powder and crucible results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3