Microporosity evolution in polymer‐derived SiOC glasses pyrolyzed in different atmospheres

Author:

Cassetta Michele12ORCID,Peterlik Herwig3,Konegger Thomas4ORCID,Daldosso Nicola2,Sorarù Gian Domenico1ORCID,Biesuz Mattia1ORCID

Affiliation:

1. Department of Industrial Engineering University of Trento Trento Italy

2. Department of Engineering for Innovation Medicine University of Verona Verona Italy

3. Faculty of Physics University of Vienna Vienna Austria

4. Institute of Chemical Technologies and Analytics, TU Wien Vienna Austria

Abstract

AbstractPolymer‐derived ceramics (PDCs) are a class of advanced materials obtained by pyrolysis in a controlled atmosphere of an organosilicon polymer. Their functional as well as mechanical properties originate from the peculiar nanostructures developed during the pyrolysis. Herein, we investigate the formation of transient microporosity in a model PDC (methyl‐silsesquioxane) obtained in Ar, Ar–5%H2, CO2, and air. It is shown that a common evolution can be detected up to 700°C. At this temperature, the structure of the material in terms of chemical bonds is marginally changed (only redistribution reactions take place), but the medium‐range order is clearly modified moving the system to a more disordered state (detected by small angle x‐ray scattering [SAXS]) and causing the formation of a large amount of open micropores sized at about 1.2–1.7 nm. In the 700–800°C range, the proper ceramization starts causing the formation of a new class of small (around 1 nm) open micropores. These partially annihilate at 900°C in Ar and Ar–H2 (i.e., in the second part of the ceramization process), whereas they totally collapse in CO2 due to the formation of a more silica‐like SiOC (less polymerized and viscous). Finally, SAXS points out the persistence of relatively large closed nanovoids of about 1 nm at 1250°C for the samples treated in Ar and Ar–H2. These might explain anomalies in terms of density, elastic modulus, and thermal conductivity of this class of ceramics as reported in the literature.

Funder

European Office of Aerospace Research and Development

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3