Global reductions in manual agricultural work capacity due to climate change

Author:

Nelson Gerald C.1ORCID,Vanos Jennifer2ORCID,Havenith George3ORCID,Jay Ollie4ORCID,Ebi Kristie L.5ORCID,Hijmans Robert J.6ORCID

Affiliation:

1. University of Illinois, Urbana‐Champaign Urbana Illinois USA

2. Arizona State University Tempe Arizona USA

3. Loughborough University London UK

4. University of Sydney Sydney New South Wales Australia

5. University of Washington Seattle Washington USA

6. University of California, Davis Davis California USA

Abstract

AbstractManual outdoor work is essential in many agricultural systems. Climate change will make such work more stressful in many regions due to heat exposure. The physical work capacity metric (PWC) is a physiologically based approach that estimates an individual's work capacity relative to an environment without any heat stress. We computed PWC under recent past and potential future climate conditions. Daily values were computed from five earth system models for three emission scenarios (SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5) and three time periods: 1991–2010 (recent past), 2041–2060 (mid‐century) and 2081–2100 (end‐century). Average daily PWC values were aggregated for the entire year, the growing season, and the warmest 90‐day period of the year. Under recent past climate conditions, the growing season PWC was below 0.86 (86% of full work capacity) on half the current global cropland. With end‐century/SSP5‐8.5 thermal conditions this value was reduced to 0.7, with most affected crop‐growing regions in Southeast and South Asia, West and Central Africa, and northern South America. Average growing season PWC could falls below 0.4 in some important food production regions such as the Indo‐Gangetic plains in Pakistan and India. End‐century PWC reductions were substantially greater than mid‐century reductions. This paper assesses two potential adaptions—reducing direct solar radiation impacts with shade or working at night and reducing the need for hard physical labor with increased mechanization. Removing the effect of direct solar radiation impacts improved PWC values by 0.05 to 0.10 in the hottest periods and regions. Adding mechanization to increase horsepower (HP) per hectare to levels similar to those in some higher income countries would require a 22% increase in global HP availability with Sub‐Saharan Africa needing the most. There may be scope for shifting to less labor‐intensive crops or those with labor peaks in cooler periods or shift work to early morning.

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3