Affiliation:
1. Research Institute for Smart Cities, School of Architecture and Urban Planning Shenzhen University Shenzhen China
2. State Key Laboratory of Subtropical Building and Urban Science Shenzhen China
3. Guangdong–Hong Kong‐Macau Joint Laboratory for Smart Cities Shenzhen China
Abstract
AbstractClustering is one of the most prevalent and important data mining algorithms ever developed. Currently, most clustering methods are divided into distance‐based and density‐based. In 2014, the fast search and find of density peaks clustering method was proposed, which is simple and effective and has been extensively applied in several research domains. However, the original version requires manually assigning a cut‐off distance and selecting core points. Therefore, this article improves the density peak clustering method from two aspects. First, the Gaussian kernel is substituted with a k‐nearest neighbors method to calculate local density. This is important as compared with selecting a cut‐off distance, calculating the k‐value is easier. Second, the core points are automatically selected, unlike the original method that manually selects the core points regarding local density and distance distribution. Given that users' selection influences the clustering result, the proposed automatic core point selection strategy overcomes the human interference problem. Additionally, in the clustering process, the proposed method reduces the influence of manually assigned parameters.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献