Flood susceptibility modeling by integrating tree‐based regression with metaheuristic algorithm, BWO

Author:

Satapathy Deba Prakash1ORCID,Mishra Bibhu Prasad1

Affiliation:

1. Department of Civil Engineering Odisha University of Technology and Research Bhubaneswar India

Abstract

AbstractFloods are becoming more widely acknowledged as a common occurrence of nature's dangers on a global scale. Although forecasting models primarily focus on timely warnings, models aimed at evaluating dangerous zones can play a vital role in shaping policies for adaptation, mitigation, and reducing the risk of disasters. Using machine learning techniques including hybrid black widow optimization (BWO) with XGBoost, LGBoost, and AdaBoost. We generate a flood susceptibility map for considered region of lower mahanadi basin (LMB). This study examines the effectiveness of these machine learning models in assessing and mapping flood susceptibility, while also providing suggestions for future research in this area. Flood susceptibility model was developed using 13 variables: Altitude, Aspect, Curvature, Distance from river, Drainage Density, Stream Power Index (SPI), Sediment Transport Index (STI), Rainfall intensity, Land Use Land Cover (LULC), Topographic Wetness Index (TWI), Terrain Roughness Index (TRI), Normalized Difference Vegetation Index (NDVI), and slope. Additionally, flood inventory data were incorporated into the model. Dataset was divided into a 70% portion for training model and a 30% portion for validating model. To assess the performance of the model, several evaluation metrics were employed, including receiver operating characteristic (ROC) curve and other performance indices. Evaluation of flood susceptibility mapping, using ROC curve method in combination with flood density yielded strong and reliable results for various models. BWO‐XGBoost achieved a score of 0.889, BWO‐LGBoost achieved a score of 0.937, and BWO‐ADABoost achieved a score of 0.904. These scores indicate effectiveness of these models in accurately predicting flood susceptibility in the study area. A comparison was made with commonly used methods in flood susceptibility assessment to evaluate the efficiency of proposed models. It was found that having a first‐class and enlightening database is crucial for accurately classifying flood types in flood susceptibility mapping. This aspect greatly contributes to improving the overall performance of the model. Among the evaluated methods, the hybrid model BWO‐LGBoost demonstrated better performance compared with others, indicating its effectiveness in accurately predicting flood susceptibility.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3