Affiliation:
1. Department of Civil Engineering Odisha University of Technology and Research Bhubaneswar India
Abstract
AbstractFloods are becoming more widely acknowledged as a common occurrence of nature's dangers on a global scale. Although forecasting models primarily focus on timely warnings, models aimed at evaluating dangerous zones can play a vital role in shaping policies for adaptation, mitigation, and reducing the risk of disasters. Using machine learning techniques including hybrid black widow optimization (BWO) with XGBoost, LGBoost, and AdaBoost. We generate a flood susceptibility map for considered region of lower mahanadi basin (LMB). This study examines the effectiveness of these machine learning models in assessing and mapping flood susceptibility, while also providing suggestions for future research in this area. Flood susceptibility model was developed using 13 variables: Altitude, Aspect, Curvature, Distance from river, Drainage Density, Stream Power Index (SPI), Sediment Transport Index (STI), Rainfall intensity, Land Use Land Cover (LULC), Topographic Wetness Index (TWI), Terrain Roughness Index (TRI), Normalized Difference Vegetation Index (NDVI), and slope. Additionally, flood inventory data were incorporated into the model. Dataset was divided into a 70% portion for training model and a 30% portion for validating model. To assess the performance of the model, several evaluation metrics were employed, including receiver operating characteristic (ROC) curve and other performance indices. Evaluation of flood susceptibility mapping, using ROC curve method in combination with flood density yielded strong and reliable results for various models. BWO‐XGBoost achieved a score of 0.889, BWO‐LGBoost achieved a score of 0.937, and BWO‐ADABoost achieved a score of 0.904. These scores indicate effectiveness of these models in accurately predicting flood susceptibility in the study area. A comparison was made with commonly used methods in flood susceptibility assessment to evaluate the efficiency of proposed models. It was found that having a first‐class and enlightening database is crucial for accurately classifying flood types in flood susceptibility mapping. This aspect greatly contributes to improving the overall performance of the model. Among the evaluated methods, the hybrid model BWO‐LGBoost demonstrated better performance compared with others, indicating its effectiveness in accurately predicting flood susceptibility.