Spatiotemporal stacking method with daily‐cycle restrictions for reconstructing missing hourly PM2.5 records

Author:

Chen Chuanfa12ORCID,Li Kunyu1

Affiliation:

1. College of Geodesy and Geomatics Shandong University of Science and Technology Qingdao China

2. Key Laboratory of Geomatics and Digital Technology of Shandong Province Shandong University of Science and Technology Qingdao China

Abstract

AbstractThe reliability of hourly PM2.5 data obtained from air quality monitoring stations is compromised as a result of the missing values, thereby impeding the thorough examination of crucial information. In this paper, we present a spatiotemporal (ST) stacking machine learning (ML) method with daily‐cycle restrictions for reconstructing missing hourly PM2.5 records. First, the ST neighbors for the target station with missing values are selected at a daily scale. Subsequently, the non‐null data within the ST neighbors undergo an iterative P‐BSHADE interpolation process for re‐interpolation. Next, a stacking ML model is constructed using the re‐interpolation values and several environmental factors associated with PM2.5 as the predictors, while the observed PM2.5 is taken as the independent variable. Finally, the missing values are reconstructed by inputting the predictors into the trained stacking model. The study utilized hourly PM2.5 data in the Beijing‐Tianjin‐Hebei region as a case study to assess the effectiveness of the proposed method, using daily missing ratios of 10%, 30%, and 50%, respectively. The accuracy of the proposed method was then compared to four contemporary ST interpolation methods. The results indicate that the proposed method exhibits superior performance compared to the classical methods. Specifically, it achieves a reduction in the average root mean square error and mean absolute error by at least 40.6% and 40.1%, respectively. Additionally, the proposed method demonstrates the successful recovery of extreme values in the hourly PM2.5 records, in contrast to the classical methods which often exhibit a tendency to overestimate low values and underestimate high values. Overall, the proposed method presents a viable and efficient approach to recover missing values in the hourly PM2.5 records that demonstrate evident daily periodic patterns.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3