Graph distance and feature‐guided multi‐view clustering: A novel method for clustering urban buildings

Author:

Yang Lin1ORCID,Yang Ruolin2,Zuo Zejun1,Kwan Mei‐Po3ORCID,Zhou Shunping1

Affiliation:

1. School of Computer Science China University of Geosciences Wuhan China

2. National Engineering Research Center of Geographic Information System China University of Geosciences Wuhan China

3. Department of Geography and Resource Management, Institute of Space and Earth Information Science The Chinese University of Hong Kong Hong Kong China

Abstract

AbstractUrban buildings are an integral component of urban space, and accurately identifying their spatial configurations and grouping them is vital for various urban applications. However, most existing building clustering methods only utilize the original spatial and nonspatial features of buildings, disregarding the potential value of complementary information from multiple perspectives. This limitation hinders their effectiveness in scenarios with intricate spatial configurations. To address this, this article proposes a novel multi‐view building clustering method that captures cross‐view information from spatial and nonspatial features. Drawing inspiration from both spatial proximity characteristics and nonspatial attributes, three views are established, including two spatial distance graphs (centroid distance graph and the nearest outlier distance graph) and a building attribute graph (multiple‐attribute graph). The three graphs undergo iterative cross‐diffusion processes to amplify similarities within each predefined graph view, culminating in their fusion into a unified graph. This fusion facilitates the comprehensive correlation and mutual enhancement of spatial and nonspatial information. Experiments were conducted using 10 real‐world community‐building datasets from Wuhan and Chengdu, China. The results demonstrate that our approach achieves 21.27% higher accuracy and 22.28% higher adjusted rand index in recognizing diverse complex arrangements compared to existing methods. These findings highlight the importance of leveraging complementary and consensus information across different feature dimensions for improving the performance of building clustering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3