Association rule mining of air quality through an improved Apriori algorithm: A case study in 244 Chinese cities

Author:

Shen Keyi1ORCID,Tian Ye12ORCID,Hu Bisong1ORCID,Luo Jin1,Qi Shuhua1,Chen Songli1,Lin Hui1

Affiliation:

1. School of Geography and Environment Jiangxi Normal University Nanchang Jiangxi China

2. Urban Big Data Center, School of Social & Political Sciences University of Glasgow Glasgow UK

Abstract

AbstractPredicting air pollution is complex due to intertwined factors among local climate, built environment, and development stages. This study leverages K‐means clustering and an improved Apriori algorithm to investigate the combined effects of local meteorological, morphological, and socioeconomic factors on air quality in 244 prefectural‐level Chinese cities. Results reveal that the secondary industry in GDP and saturation vapor pressure strongly relate to air quality. Severe air pollution occurs when urban development is coupled with reduced green areas and high temperatures, confirming that a single factor cannot predict air quality well. For example, we find that combining low population, low regional GDP, high maximum temperatures, and longer roads worsens air quality in small urban built‐up areas. Additionally, temperature and altitude differences associate with highway passenger volume, regional GDP, and population differently. Given our rules mining methods have broader applications in diversified urban environments, this study provides new insights for improving air quality and local Sustainable Development Goals.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3