A planar graph cluster‐routing approach for optimizing medical waste collection based on spatial constraint

Author:

Bagheri Keyvan1ORCID,Samany Najmeh Neysani1ORCID,Toomanian Ara1ORCID,Jelokhani‐Niaraki Mohammadreza1ORCID,Hajibabai Leila2ORCID

Affiliation:

1. Department of GIS and Remote Sensing, Faculty of Geography University of Tehran Tehran Iran

2. Department of Industrial and Systems Engineering North Carolina State University Raleigh North Carolina USA

Abstract

AbstractMedical Solid Wastes (MSWs) are major hazardous materials containing harmful biological or chemical compounds that present public and environmental health risks. The collection and transportation of waste are usually informed by optimized work‐balanced routing based on comprehensive spatial data in urban traffic networks, called a Vehicle Routing Problem (VRP). This may be unsuitable for MSWs as their special category means they impose additional complexity. The present article develops a planar graph‐based cluster‐routing approach for the optimal collection of MSWs informed by a Geospatial Information System (GIS). The problem is first formulated as a mixed integer linear program in road network spatial data, in the context of Tehran city. The work has two key aims: (i) to minimize the total routing cost of MSW collection and transfer to waste landfills; (ii) to balance workload across waste collectors. There are three main contributions of the proposed approach: (i) to simplify the large search space area by converting the road network to a planar graph based on graph theory, spatial parameters, and topological rules; (ii) to use a modified K‐means algorithm for clustering; (iii) to consider average traffic impacts in the clustering stage and momentary traffic in the route planning stage. A planar graph extraction procedure is applied to capture the network sketch (i.e., a directed graph) from the traffic roadway network. An iterative cluster‐first‐route‐second heuristic is employed to solve the proposed routing problem. This heuristic customizes a K‐means algorithm to determine the optimal number and size of clusters (i.e., routes). A Traveling Salesman Problem (TSP) algorithm is applied to regulate the optimal sequence of visits to medical centers. The experimental results show improvements in balancing collectors' workload (i.e., ~4 min reduction in the standard deviation of average travel time) with reductions in travel time (i.e., an average ~1 h for the entire fleet and ~4 min per route). These findings confirm that the proposed methodology can be considered as an approach for optimizing waste collection routes.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3